便携式调制叶绿素荧光仪PAM-2500-农林牧渔-仪器设备-生物在线
便携式调制叶绿素荧光仪PAM-2500

便携式调制叶绿素荧光仪PAM-2500

商家询价

产品名称: 便携式调制叶绿素荧光仪PAM-2500

英文名称:

产品编号: ZQ-WALZ007

产品价格: 0

产品产地: 德国WALZ

品牌商标: WALZ

更新时间: null

使用范围: null

上海泽泉科技股份有限公司
  • 联系人 :
  • 地址 : 上海市金沙江路1038号华东师大科技园2幢8楼
  • 邮编 : 200062
  • 所在区域 : 上海
  • 电话 : 150****7287
  • 传真 : 021-32555117
  • 邮箱 : michael.shen@zealquest.com

PAM-2500——PAM-2100的升级版
野外光合作用研究的首选仪器
Schreiber教授因发明PAM系列调制叶绿素荧光仪而获得首届国际光合作用协会(ISPR)创新奖

1983年,WALZ公司首席科学家、德国乌兹堡大学的Ulrich Schreiber教授设计制造了全世界第一台调制荧光仪——PAM-101/102/103,使在自然光下测量叶绿素荧光成为现实,解决了科学界近50年的技术瓶颈。PAM-101/102/103迅速在植物生理、生态、农学、林学、水生生物学等领域得到广泛应用,出版了大量高水平研究文献。但该仪器比较笨重,不易带到野外。

1992年,WALZ公司首席科学家、调制荧光仪发明人、德国乌兹堡大学的Ulrich Schreiber教授设计制造了全世界第一台便携式调制荧光仪——PAM-2000,并且在植物生理生态学等科研领域得到广泛应用,此后十几年中成为全球最畅销的调制荧光仪。

2003年,WALZ公司在保留PAM-2000所有功能和优点的基础上,结合最新技术,将PAM-2000升级到了PAM-2100

2008年,WALZ公司在保留PAM-2100所有功能和优点的基础上,结合最新的超便携个人电脑(UMPC)技术,将PAM-2100升级到了完全基于UMPC电脑Windows系统的PAM-2500


系统描述
PAM-2500采用了独特的调制技术饱和脉冲技术,从而可以通过选择性的原位测量叶绿素荧光来检测植物光合作用的变化。PAM-2500的调制测量光足够低,可以只激发色素的本底荧光而不引起任何的光合作用,从而可以真实的记录基础荧光Fo。PAM-2500具有很强的灵敏度和选择性,使其即使在很强的、未经滤光片处理的环境下(如全日照甚至是10000 μmol m-2 s-1的饱和光强下)也可测定荧光产量而不受到干扰。因此,PAM-2500不但适合在实验室人工控制的环境下测量,还可以在自然环境中甚至是强烈的全光照条件下开展野外科学研究。

PAM-2500不仅可以连接电脑通过Windows XP SP2系统或Vista系统操作,还可连接UMPC通过Windows XP Tablet PC Edition来操作。UMPC带60G硬盘,1G内存,功能堪比笔记本电脑。

PAM-2500除了标准的叶绿素荧光测量所需配置外,还额外增加了单周转饱和闪光(ST)和多周转饱和闪光(MT),为将来升级P700测量功能埋下了伏笔。

特点
   * 声誉卓著的PAM-2100的升级版
 * 精巧、准确、迅速、操作简便的高级光合作用检测设备
 * 利用强大的UMPC电脑进行操作,完全基于Windows操作系统,界面友好
 * 利用超强发光二极管(LED)提供光化光和饱和脉冲,不再使用散热量大的卤素灯
 * 强大的数据收集、分析和存贮功能
 * 内置锂电池可满足长时间野外工作需要,并可连接外置12 V电池
 * 多种叶夹可供选择,专利设计的光适应叶夹2030-B可同时记录PAR和温度变化
 * 60 G硬盘,无限量存储


功能
 * 可测荧光诱导曲线的快速上升动力学O-I-D-P相和O-J-I-P相
 * 可测荧光诱导曲线的慢速下降动力学并进行淬灭分析(Fo、Fm、F、Fo’、Fm’、Fv/Fm、Y(II)= ΔF/Fm’、qL、qP、qN、NPQ、Y(NPQ)、Y(NO)、ETR、C/Fo、PAR和叶温等)
 * 可测光响应曲线和快速光曲线(RLC)
 * 可在线检测植物、微藻、地衣、苔藓等的光合作用变化
 * 操作功能强大,特别适合野外操作,野外操作也使用Windows系统


应用领域
仪器设计特别适合野外使用,可用于研究光合作用机理、各种环境因子(光、温、营养等)对植物生理状态的影响、植物抗逆性(干旱、冷、热、涝、UV、病毒、污染、重金属等)、植物的长期生态学变化等。在植物生理学、植物生态学、植物病理学、农学、林学、园艺学、水生生物学、环境科学、毒理学、微藻生物技术、极地植物光合作用研究等领域有着广泛应用。

主要技术参数
* 测量光:红色LED,630 cnm,FWHM 20 nm;调制频率测量Fo时5-5000 Hz可选,打开光化光时1-100 kHz可选,测量荧光诱导动力学的快相时200 kHz;20级可调。
* 光化光源
    蓝色光化光:LED,455 nm,FWHM 20 nm,光强范围0-800 μmol m-2 s-1 PAR,20级可调。
    红色光化光:LED,630 nm,FWHM 15 nm,光强范围0-5000 μmol m-2 s-1 PAR,20级可调。
* 饱和脉冲:红色LED,630 nm,FWHM 15 nm,最大PAR 25 000 μmol m-2 s-1,持续时间0.1-0.8 s可调,光强20级可调。
* 远红光:LED,750 nm,FWHM 25 nm,20级可调。
* 单周转饱和闪光:红色LED,630 nm,FWHM 15 nm,最大PAR 125 000 μmol m-2 s-1,持续时间5-50 s可调。
* 多周转饱和闪光:红色LED,630 nm,FWHM 15 nm,最大PAR 25 000 μmol m-2 s-1,持续时间1-300 ms可调,光强20级可调。
* 信号检测:PIN-光电二极管,带长通滤光片(T(50%)=715 nm),带选择性锁相放大器。
* 测量参数:Fo、Fm、F、Fo’、Fm’、Fv/Fm、Y(II)= ΔF/Fm’、qL、qP、qN、NPQ、Y(NPQ)、Y(NO)、ETR、C/Fo、PAR和叶温等。
耗电:基础操作1.6 W,内置光源(测量光、红色和蓝色光化光、远红光)为最大输出时8 W,饱和脉冲最大输出时37 W。
充电时间:关机状态下约需6 h。 
微型光量子传感器:测量光合有效辐射(PAR),测量范围0~20000 μmol m-2 s-1 PAR
热电耦(温度传感器):Ni-CrNi,直径0.1 mm,测量范围20~+60℃
数据通讯:USB;蓝牙v2.0+EDR Class 2
操作系统:  Windows XP Tablet PC Edition,Windows XP SP2或Vista
* 超移动个人电脑(UMPC)参数
    型号:三星Q1 Ultra触摸屏UMPC
    处理器:Intel A110 800MHz ULV
    缓存:512 Kb
    内存:1G的DDR II内存
    硬盘:60 G,4200 rpm
    显示器:7英寸WSVGA触摸屏显示器,1024 x 600像素
    图形卡:Intel GMA950,最大128 M共享内存
    通讯方式:USB 2.0(两个);有线LAN;无线LAN(802.11b/g);蓝牙2.0+EDR
    读卡插槽:SD/MMC
    电池:两块锂电池,一块为7.4 V/4 Ah,可工作3.5 h,另一块为7.4 V/7.8 Ah,可工作6 h
    供电:100-240 V AC,50-60 Hz

部分文献(PAM-2000/PAM-2100/PAM-2500

1. Yin CY, Berninger F, Li CY, 2006. Photosynthetic responses of Populus przewalski subjected to drought stress Photosynthetica 44: 62-68.
2. Yaronskaya E, Vershilovskaya I, Poers Y, Alawady AE, Averina N, Grimm2 B, 2006. Cytokinin effects on tetrapyrrole biosynthesis and photosynthetic activity in barley seedlings. Planta: in press.
3. Yang Y, Sulpice R, Himmelbach A, Meinhard M, Christmann A, Grill E, 2006. Fibrillin expression is regulated by abscisic acid response regulators and is involved in abscisic acid-mediated photoprotection Proc. Natl. Acad. Sci. USA 103: 6061-6066.
4. Veres S, Tóth VR, Láposi R, Oláh V, Lakatos G, Mészáros I, 2006. Carotenoid composition and photochemical activity of four sandy grassland species. Photosynthetica 44: 255-261.
5. Subrahmanyam D, Subash N, Haris A, Sikka AK, 2006. Influence of water stress on leaf photosynthetic characteristics in wheat cultivars differing in their susceptibility to drought Photosynthetica 44: 125-129.
6. Rautenberger R, Bischof K, 2006. Impact of temperature on UV-susceptibility of two Ulva (Chlorophyta) species from Antarctic and Subantarctic regions. Polar Biology: in press.
7. Naidoo G, 2006. Factors contributing to dwarfing in the mangrove Avicennia marina. Annals of Botany 97: 1095-1101.
8. Lizana C, Wentworth M, Martinez JP, Villegas D, Meneses R, Murchie EH, Pastenes C, Lercari B, Vernieri P, Horton P, Pinto M, 2006. Differential adaptation of two varieties of common bean to abiotic stress: I. Effects of drought on yield and photosynthesis. Journal of Experimental Botany 57: 685-697.
9. Häubner N, Schumann, Karsten U, 2006. Aeroterrestrial microalgae growing in biofilms on facades—response to temperature and water stress. Microbial Ecology: in press.
10. Bertamini M, Muthuchelian K, Nedunchezhian N, 2006. Shade effect alters leaf pigments and photosynthetic responses in Norway spruce (Picea abies L.) grown under field conditions. Photosynthetica 44: 227-234.
11. Yang X, Lu C, 2005. Photosynthesis is improved by exogenous glycinebetaine in salt-stressed maize plants. Physiologia Plantarum 124: 343-352.
12. Wodala B, Deák Z, Vass I, Erdei L, Horváth F, 2005. Nitric oxide modifies photosynthetic electron transport in pea leaves. Acta Biologica Szegediensis 49: 7-8.
13. Wen X, Qiu N, Lu Q, Lu C, 2005. Enhanced thermotolerance of photosystem II in salt-adapted plants of the halophyte Artemisia anethifolia. Planta 220: 486-497.
14. Wen X, Gong H, Lu C, 2005. Heat stress induces an inhibition of excitation energy transfer from phycobilisomes to photosystem II but not to photosystem I in a cyanobacterium Spirulina platensis. Plant Physiology and Biochemistry 43: 389–395.
15. Wen X, Gong H, Lu C, 2005. Heat stress induces a reversible inhibition of electron transport at the acceptor side of photosystem II in a cyanobacterium Spirulina platensis. Plant Science 168: 1471–1476.
16. Tang Y, Wen X, Lu C, 2005. Differential changes in degradation of chlorophyll–protein complexes of photosystem I and photosystem II during flag leaf senescence of rice. Plant Physiology and Biochemistry 43: 193-201.
17. Takabayashi A, Kishine M, Asada K, Endo T, Sato F, 2005. Differential use of two cyclic electron flows around photosystem I for driving CO2-concentration mechanism in C4 photosynthesis. Proc. Natl. Acad. Sci. USA 102: 16898-16903.
18. Souza GM, Ribeiro RV, de Oliveira RF, Machado EC, 2005. Network connectance and autonomy analyses of the photosynthetic apparatus in tropical tree species from different successional groups under contrasting irradiance conditions. Revista Brasileira de Botanica 28: 47-59.
19. Siffel P, Santrucek J, 2005. Diurnal course of photochemical activity of winter-adapted Scots pine at subzero temperatures Photosynthetica 43: 395-402.
20. Shirke PA, Pathre UV, 2005. Influence of leaf-to-air vapour pressure deficit (VPD) on the biochemistry and physiology of photosynthesis in Prosopis juliflora. Journal of Experimental Botany 55: 2111-2120.
21. Rassadina VV, Usatov AV, Fedorenko GM, Averina NG, 2005. Activity of the system for chlorophyll biosynthesis and structural and functional organization of chloroplasts in a plastome en:chlorina-5 sunflower mutant Russian Journal of Plant Physiology 52: 606-615.
22. Pérez-Priego O, Zarco-Tejada PJ, Miller JR, Sepulcre-Cantó G, Fereres E, 2005. Detection of water stress in Orchard trees with a high-resolution spectrometer through chlorophyll fluorescence in-filling of the O2-A band. IEEE Transactions on Geoscience and remote Sensing 43: 2860-2869.
23. Penuelas J, Llusia J, Asensio D, Munne-Bosch S, 2005. Linking isoprene with plant thermotolerance, antioxidants and monoterpene emissions. Plant Cell and Environment 28: 278-286.
24. Kosourov S, Makarova V, Fedorov AS, Tsygankov A, Seibert M, Ghirardi ML, 2005. The effect of sulfur re-addition on H2 photoproduction by sulfur-deprived green algae. Photosynthesis Research 85: 295-305.
25. Jeon M-W, Ali MB, Hahn E-J, Paek K-Y, 2005. Effects of photon flux density on the morphology, photosynthesis and growth of a CAM orchid, Doritaenopsis during post-micropropagation acclimatization. Plant Growth Regulation 45: 139-147.
26. Ifuku K, Yamamoto Y, Ono T-a, Ishihara S, Sato F, 2005. PsbP protein, but not PsbQ protein, is essential for the regulation and stabilization of photosystem II in higher plants. Plant Physiology 139: 1175–1184.
27. Havaux M, Eymery F, Porfirova S, Rey P, Dormann P, 2005. Vitamin E protects against photoinhibition stress in Arabidopsis thaliana. The Plant Cell 17: 3451-3469.
28. Guéra A, Calatayud A, Sabater B, Barreno E, 2005. Involvement of the thylakoidal NADH-plastoquinone-oxidoreductase complex in the early responses to ozone exposure of barley (Hordeum vulgare L.) seedlings Journal of Experimental Botany 56: 205-218.
29. Feild TS, Sage TL, Czerniak C, Iles WJD, 2005. Hydathodal leaf teeth of Chloranthus japonicus (Chloranthaceae) prevent guttation-induced flooding of the mesophyll. Plant Cell and Environment 28: 1179-1190.
30. Feild TS, Brodribb TJ, 2005. A unique mode of parasitism in the conifer coral tree Parasitaxus ustus (Podocarpaceae). Plant Cell and Environment 28: 1316-1325.
31. Favory J-J, Kobayshi M, Tanaka K, Peltier G, Kreis M, Valay J-G, Lerbs-Mache S, 2005. Specific function of a plastid sigma factor for ndhF gene transcription. Nucleic Acid Research 33: 5991-5999.
32. Bigras FJ, 2005. Photosynthetic response of white spruce families to drought stress. New Forests 29: 135-148.
33. Bertamini M, Muthuchelian K, Rubinigg M, Zorer R, Nedunchezhian N, 2005. Photoinhibition of photosynthesis in leaves of grapevine (Vitis vinifera L. cv. Riesling). Effect of chilling nights Photosynthetica 43: 551-557.
34. Xu Z-Z, Zhou G-S, Li H, 2004. Response of chlorophyll fluorescence and nitrogen level of Leymus chinensis seedling tho changes of soil moisture and temperature. Journal of Environmental Sciences 16: 666-669.
35. Wilson S, Blake C, Berges JA, Maggs CA, 2004. Environmental tolerances of free-living coralline algae (maerl): implications for European marine conservation. Biological Conservation 120: 283-293.
36. Sjögren LLE, MacDonald TM, Sutinen S, Clarke AK, 2004. Inactivation of the clpC1 gene encoding a chloroplast Hsp100 molecular chaperone causes growth retardation, leaf chlorosis, lower photosynthetic activity, and a specific reduction in photosystem content. Plant Physiology 136: 4114-4126.
37. Salvucci ME, Crafts-Brandner SJ, 2004. Relationship between the heat tolerance of photosynthesis and the thermal stability of Rubisco activase in plants from contrasting thermal environments. Plant Physiology 134: 1460-1470.
38. Romero HM, Berlett BS, Jensen PJ, Pell EJ, Tien M, 2004. Investigations into the role of the plastidial peptide methionine sulfoxide reductase in response to oxidative stress in Arabidopsis. Plant Physiology 136: 3784-3794.
39. Munné-Bosch S, Peñuelas J, Asensio D, Llusià J, 2004. Airborne ethylene may alter antioxidant protection and reduce tolerance of holm oak to heat and drought stress. Plant Physiology 136: 2937-2947.
40. McElrone AJ, Forseth IN, 2004. Photosynthetic Responses of a Temperate Liana to Xylella fastidiosa Infection and Water Stress. Journal of Phytopathology 152: 9-20.
41. Lu Q, Lu C, 2004. Photosynthetic pigment composition and photosystem II photochemistry of wheat ears. Plant Physiology and Biochemistry 42: 395-402.
42. Larbi A, Abadía A, Morales F, Abadía J, 2004. Fe resupply to Fe-deficient sugar beet plants leads to rapid changes in the violaxanthin cycle and other photosynthetic characteristics without significant de novo chlorophyll synthesis. Photosynthesis Research 79: 59-69.
43. Ji B-H, Zhu S-Q, Jiao D-M, 2004. A limited photosynthetic C4-microcycle and its physiological function in transgenic rice plant expressing the maize PEPC gene. Acta Botanica Sinica 46: 542-551.
44. Havaux M, Dall'Osto L, Cuiné S, Giuliano G, Bassi R, 2004. The effect of zeaxanthin as the only xanthophyll on the structure and function of the photosynthetic apparatus in Arabidopsis thaliana. The Journal of Biological Chemistry 279: 13878-13888.
45. Fujibe T, Saji H, Arakawa K, Yabe N, Takeuchi Y, Yamamoto KT, 2004. A methyl viologen-resistant mutant of Arabidopsis, which is allelic to ozone-sensitive rcd1, is tolerant to supplemental ultraviolet-B irradiation. Plant Physiology 134: 275-285.
46. Ensminger I, Sveshnikov D, Campbell DA, Funk C, Jansson S, Lloyd J, Shibistova O, Öquist G, 2004. Intermittent low temperatures constrain spring recovery of photosynthesis in boreal Scots pine forests. Global Change Biology 10: 1-14.
47. D'Haese D, Vandermeiren K, Caubergs RJ, Guisez Y, Temmerman LD, Horemans N, 2004. Non-photochemical quenching kinetics during the dark to light transition in relation to the formation of antheraxanthin and zeaxanthin. Journal of Theoretical Biology 227: 175-186.
48. Biemelt S, Tschiersch H, Sonnewald U, 2004. Impact of altered gibberellin metabolism on biomass accumulation, lignin biosynthesis, and photosynthesis in transgenic tobacco plants. Plant Physiology 135: 254-265.