多通道科研级全自动膜片钳 Patchliner-神经生物学仪器-仪器设备-生物在线
多通道科研级全自动膜片钳 Patchliner

多通道科研级全自动膜片钳 Patchliner

商家询价

产品名称: 多通道科研级全自动膜片钳 Patchliner

英文名称: Patchliner

产品编号: Patchliner

产品价格: 0

产品产地: 德国

品牌商标: Nanion

更新时间: 2024-04-07T09:43:22

使用范围: null

耐尼恩技术(北京)有限公司
  • 联系人 : 毋建礼
  • 地址 : 海淀区上地十街辉煌国际西6楼337
  • 邮编 :
  • 所在区域 : 北京
  • 电话 : 010-821*6388
  • 传真 : 010-82176383
  • 邮箱 : jack.wu@nanion.cn

<p> </p><p><br></p><h1>Patchliner - 兼顾科研与药物研发</h1><p><br></p><p>Patchliner全自动膜片钳最多可同时记录8个细胞,具有极大的实验自由度和极高的数据质量。Patchliner是市场上最通用的膜片钳系统之一。Patchliner具有以下特点:</p><h2><strong>硬件:</strong></h2><ul><li>可对细胞外液与内液进行灌流</li><li>可无限次数给药(由于持续对废液移除)</li><li>温度控制 (见Applications)</li><li>可制冷的细胞池</li><li>支持电压钳 &amp; 电流钳记录 + 动态钳制技术</li><li>有4通道与8通道两个配置可供选择</li><li>有自产的单孔 &amp; 多孔芯片</li><li>串联电阻Rseries补偿</li><li><br></li></ul><h2><strong>应用:</strong></h2><ul><li>电压与配体门控离子通道</li><li>温度激活通道</li><li>在生理温度下记录</li><li>全细胞l &amp; 穿孔膜片钳</li><li>细胞系、原代细胞与干细胞</li><li>为CiPA而验证的系统</li><li>极少的细胞消耗</li><li>易用 &amp; 定制的分析工具</li><li><br></li></ul><p>Patchliner是一款多功能且强大的膜片钳系统,是基础研究与离子通道生物物理学与通道活动机制研究的理想工具。 可进行许多复杂的实验,如热激活<a href="https://www.nanion.dehttps://msimg.bioon.com/bionline//images/phocadownload/Application_Notes/Nanion_APP_Note_PL_TRPV1.pdf" rel="noopener noreferrer" target="_blank" style="background-color: transparent; color: rgb(5, 58, 92);">TRP 通道</a>, 通过&nbsp;<a href="https://www.nanion.dehttps://msimg.bioon.com/bionline//images/phocadownload/Application_Notes/Nanion_APP_Note_PL_hKCa3_1_02028.pdf" rel="noopener noreferrer" target="_blank" style="background-color: transparent; color: rgb(5, 58, 92);">内液交换</a>&nbsp;激活 Ca<span style="background-color: initial;">2+</span>-激活通道与通过快速外液灌流实现对诸如&nbsp;<a href="https://www.nanion.dehttps://msimg.bioon.com/bionline//images/phocadownload/Application_Notes/Nanion_APP_Note_PL_Nicotinic_AChR_a7.pdf" rel="noopener noreferrer" target="_blank" style="background-color: initial; color: rgb(0, 102, 204);">nAChα7</a>等配体门控离子通道进行短时间的药物暴露操作。 such as Patchliner也是进行常规试验的卓越的工具,例如CiPA规定的对ERG和其他心脏离子通道的安全筛选等。</p><p>自2006年发布以来, 在全球已经安装了超过100台设备,包括学术机构 (46%), 制药企业(34%)与CRO公司 (20%)。Patchliner由于其稳定的高封接成功率 (&gt;80% GΩ级封接),&nbsp;极少的细胞消耗和被证明能在原代细胞与干细胞上使用等优势点而被广泛赞誉。</p><p>我们专业的电生理团队与工程师们持续进行内部的试验研发, 软件与硬件的升级、提供快速与定制的溶液以满足实验需求。</p><p><strong>基于平板膜片钳技术的全自动膜片钳设备</strong></p><p><br></p><p>膜片钳技术是实时研究离子通道的金标准。凭借其出色的信号质量,可以研究复杂的生物物理特性和离子通道的效功能。随着基于平面芯片的全自动膜片钳技术的发展,膜片钳方法的自动化成为可能。 与传统的膜片钳技术相比,全自动膜片钳可提高通量和易用性,使更多用户可以使用。</p><p><img src="https://msimg.bioon.com/bionline/ewebeditor/fckup/2021/9/20210907162245436320.jpg" height="305" width="600"></p><p>2003年推出自动平面膜片钳设备Port-a-Patch,Nanion成为“市场上的先行者”。从那时起,我们开发了更多的仪器,这些都是可以实现“真正的GΩ级封接” ,基于平面膜片钳技术,提供各种各样的实验可能性,扩展了传统膜片钳的功能。</p><p><strong>主要附件与功能</strong></p><p><strong>Dynamite8</strong></p><p><br></p><p class="ql-align-center"><img src="https://msimg.bioon.com/bionline/ewebeditor/fckup/2021/9/20210907162338429720.png" height="514" width="600"></p><p>Dynamite8是一款全自动动态夹具附加组件,可无缝集成到8通道或4通道配线架中。IK1模拟和密封补偿分别为每个单元计算,最多可同时计算8个单元。应用我们的动态钳夹方法可产生稳定的负静息膜电位,并改善从人类诱导的多能干细胞衍生心肌细胞(hiPSC-CMs)记录的APs的稳定性和形状。稳定可靠的AP记录允许获取完整的累积剂量-反应曲线,为心脏安全性和药物测试的自动化AP药理学记录提供基础。实验期间无需用户干预:所有参数均由Dynamic8计算和应用。如果需要,可通过用户轻松访问所有关键参数进行修改。</p><p><br></p><p><strong>&nbsp;CoolingPlate</strong></p><p><br></p><p class="ql-align-center"><img src="https://msimg.bioon.com/bionline/ewebeditor/fckup/2021/9/20210907162540229308.jpg" height="401" width="600"></p><p>配线架冷却板集成到配线架中,用于控制电池和溶液的温度。细胞可以保持在一个冷却的温度,以增加密封阻力和整个细胞的稳定性,甚至在收获后数小时。溶液也可以冷却以提高稳定性,例如含有ATP的内部溶液。冷却板为CellHotel和8个Eppendorf管提供空间。它安装简单,易于通过PatchControl HT进行控制。</p><p><br></p><p><strong>Patchliner Safety edition</strong></p><p><br></p><p class="ql-align-center"><img src="https://msimg.bioon.com/bionline/ewebeditor/fckup/2021/9/20210907162633300019.jpg" height="654" width="600"></p><p>&nbsp;</p><p><br></p><p> </p><p><br></p><p><span style="color: rgb(51, 51, 51);">Patchliner安全版是为了方便地运行安全药理学协议和分析例程而设置的。根据CiPA指南,它为hERG、NaV1.5-peak、NaV1.5-late和CaV1.2预装了例程和SOP。培训的重点是安全药理学实验,当然也适用于特定的用户要求。</span>Patchliner安全版包括生理温度测量的温度控制、细胞活力和化合物稳定性的Patchliner冷却板,以及hiPSC衍生心肌细胞动态钳夹动作电位记录的dynamic 8。此外,我们还提供Nanion的CiPA专家的专家支持。</p><p><br></p><p>&nbsp;</p><p><br></p><p><strong>&nbsp;PatchControl HT</strong></p><p><br></p><p class="ql-align-center"><img src="https://msimg.bioon.com/bionline/ewebeditor/fckup/2021/9/20210907162807544941.jpg" height="325" width="600"></p><p><span style="color: rgb(51, 51, 51);">PatchControl HT是Patchliner的软件。Patchliner平台的巨大实验自由度归功于软件的灵活性。</span>PatchControl HT是一种图形用户界面,通过使用预编程模块或根据特定用户需求设置自定义协议,可以直接轻松地编程协议。由于其固有的逻辑编程能力,实验冗余被降至最低,从而最大限度地提高了数据吞吐量。PatchControl HT不仅允许从头到尾运行实验,还支持动态更改。后一个功能大大加快了分析开发过程。这也使得Patchliner成为一个有价值的研究工具。此外,PatchControl HT与各种文档和数据库格式兼容,这使得在筛选大量化合物时,化合物加载和数据分析更快、更容易。</p><p><br></p><p><strong>&nbsp;分析软件</strong></p><p><br></p><p class="ql-align-center"><img src="https://msimg.bioon.com/bionline/ewebeditor/fckup/2021/9/20210907163052453330.jpg" height="402" width="600"></p><p>使用Nanion的数据分析包(一种非常高效和方便的数据分析工具)可以轻松地分析数据。只需点击几下鼠标,即可加载、显示、分析和汇集原始数据,从而将工作量降至最低。<span style="color: rgb(51, 51, 51);">此时原始电流轨迹的显示允许判断从每个单元记录的数据的质量。单个单元格可以很容易地从数据集中排除,并重新计算平均值。电流-电压关系图以及IC50值将自动计算和显示。</span>&nbsp;</p><p><br></p><h3><strong>Patchliner 数据与应用</strong></h3><p><br></p><h4><a href="https://www.nanion.de/zh/products/patchliner/197-home-zh/articles-zh/2206-acetylcholine-receptor-alpha-3-beta-4-concentration-response-curve-nicotine-jp.html" rel="noopener noreferrer" target="_blank" style="background-color: transparent; color: rgb(5, 58, 92);">Acetylcholine Receptor Alpha 3 Beta 4 - Concentration Response Curve to Nicotine</a></h4><p><br></p><p><br></p><p><a href="https://www.nanion.dehttps://msimg.bioon.com/bionline//images/Images_tiff_jpg_png/Slider/nAChRa3b4_nic_DRC_PL.jpg" rel="noopener noreferrer" target="_blank" style="color: rgb(5, 58, 92); background-color: initial;"><img src="https://www.nanion.dehttps://msimg.bioon.com/bionline//images/Images_tiff_jpg_png/Slider/nAChRa3b4_nic_DRC_PL.jpg" alt="nAChRa3b4_nic_DRC_PL" width="300"></a></p><p><br></p><p><img src="https://www.nanion.dehttps://msimg.bioon.com/bionline//images/Images_tiff_jpg_png/Icons/Nanion_Icons/icon-pl.png" alt="icon pl">&nbsp; Patchliner data and applications:</p><p><br></p><p>Shown are the a raw current responses of a HEK293 cell expressing AChR (α3β4) to increasing concentrations of nicotine. Solutions were&nbsp; stacked (layered) in the pipette to achieve brief exposure times.</p><p><br></p><p>&nbsp;</p><p><br></p><p><br></p><h4><a href="https://www.nanion.de/zh/products/patchliner/197-home-zh/articles-zh/2295-acetylcholine-receptor-alpha-7-activation-and-dose-response-curve.html" rel="noopener noreferrer" target="_blank" style="background-color: transparent; color: rgb(5, 58, 92);">Acetylcholine Receptor Alpha 7 - Activation and Dose Response Curve</a></h4><p><br></p><p><br></p><p><a href="https://www.nanion.dehttps://msimg.bioon.com/bionline//images/Images_tiff_jpg_png/Data/EPhys_Analysis/PL_Nica7_DR_large.gif" rel="noopener noreferrer" target="_blank" style="color: rgb(5, 58, 92); background-color: initial;"><img src="https://www.nanion.dehttps://msimg.bioon.com/bionline//images/Images_tiff_jpg_png/Data/EPhys_Analysis/PL_Nica7_DR.gif" alt="PL Nica7 DR" width="200"></a></p><p><img src="https://www.nanion.dehttps://msimg.bioon.com/bionline//images/Images_tiff_jpg_png/Icons/Nanion_Icons/icon-pl.png" alt="icon pl">&nbsp;&nbsp; Patchliner data and applications:</p><p><br></p><p><em>Cells were kindly supplied&nbsp;by Galantos Pharma GmbH.</em></p><p><br></p><p>Complete nicotine dose response curves were obtained by applying increasing concentrations of nicotine to a HEK293 cell expressing human nicotinic α7 acetyl choline receptors. The stacked application protocol was used.</p><p><br></p><p><br></p><h4><a href="https://www.nanion.de/zh/products/patchliner/197-home-zh/articles-zh/2173-acetylcholine-receptor-alpha-7-enhancement-by-ns1738-zh.html" rel="noopener noreferrer" target="_blank" style="background-color: transparent; color: rgb(5, 58, 92);">Acetylcholine Receptor Alpha 7 - Enhancement by NS1738</a></h4><p><br></p><p><br></p><p><a href="https://www.nanion.dehttps://msimg.bioon.com/bionline//images/Images_tiff_jpg_png/Data/EPhys_Analysis/nACha7R_PL_NS1738_DRC.jpg" rel="noopener noreferrer" target="_blank" style="color: rgb(5, 58, 92); background-color: initial;"><img src="https://www.nanion.dehttps://msimg.bioon.com/bionline//images/Images_tiff_jpg_png/Data/EPhys_Analysis/nACha7R_PL_NS1738_DRC.jpg" alt="nACha7R PL NS1738 DRC" width="293"></a></p><p><img src="https://www.nanion.dehttps://msimg.bioon.com/bionline//images/Images_tiff_jpg_png/Icons/Nanion_Icons/icon-pl.png" alt="icon pl">&nbsp;&nbsp; Patchliner data and applications:</p><p><br></p><p><em>Cells were kindly supplied&nbsp;by Galantos Pharma GmbH.</em></p><p><br></p><p>Concentration response curve for NS1738 co-applied with 300 μM ACh revealed an EC50&nbsp;= 2.6 ± 1.1 μM (n = 4). This is in excellent agreement with the literature (Timmermann et al, 2007, JPET 323: 294–307).</p><p><br></p><p><br></p><h4><a href="https://www.nanion.de/zh/products/patchliner/197-home-zh/articles-zh/2172-acetylcholine-receptor-alpha-7-enhancement-of-cabamoylcholine-and-epidatidine-responses-by-pnu120596-zh.html" rel="noopener noreferrer" target="_blank" style="background-color: transparent; color: rgb(5, 58, 92);">Acetylcholine Receptor Alpha 7 - Enhancement of cabamoylcholine and epidatidine responses by PNU120596</a></h4><p><br></p><p><br></p><p><a href="https://www.nanion.dehttps://msimg.bioon.com/bionline//images/Images_tiff_jpg_png/Data/EPhys_Analysis/ACha7_PNU_Sheffel.jpg" rel="noopener noreferrer" target="_blank" style="color: rgb(5, 58, 92); background-color: initial;"><img src="https://www.nanion.dehttps://msimg.bioon.com/bionline//images/Images_tiff_jpg_png/Data/EPhys_Analysis/ACha7_PNU_Sheffel.jpg" alt="ACha7 PNU Sheffel" width="265"></a></p><p><img src="https://www.nanion.dehttps://msimg.bioon.com/bionline//images/Images_tiff_jpg_png/Icons/Nanion_Icons/icon-pl.png" alt="icon pl">&nbsp;&nbsp; Patchliner data and applications:</p><p><br></p><p><em>Cells were kindly supplied&nbsp;by Galantos Pharma GmbH.</em></p><p><br></p><p>Representative current records of carbamoylcholine- and epibatidine-induced nAChR activation in the absence and presence of PNU-120596. Horizontal bars indicate exposure time (233 ms) of compound(s) to the cell. Data from&nbsp;<a href="https://www.nanion.de/en/products/patchliner/137-articles/2077-2018-counteracting-desensitization-of-human-7-nicotinic-acetylcholine-receptors-with-bispyridinium-compounds-as-an-approach-against-organophosphorus-poisoning.html" rel="noopener noreferrer" target="_blank" style="background-color: transparent; color: rgb(5, 58, 92);">Scheffel et al, 2018</a>.</p><p><br></p><p><br></p><h4><a href="https://www.nanion.de/zh/products/patchliner/197-home-zh/articles-zh/2171-acetylcholine-receptor-alpha-7-enhancement-of-nicotine-and-acetylcholine-responses-by-pnu120596-zh.html" rel="noopener noreferrer" target="_blank" style="background-color: transparent; color: rgb(5, 58, 92);">Acetylcholine Receptor Alpha 7 - Enhancement of nicotine and acetylcholine responses by PNU120596</a></h4><p><br></p><p><br></p><p><a href="https://www.nanion.dehttps://msimg.bioon.com/bionline//images/Images_tiff_jpg_png/Data/EPhys_Analysis/nACha7R_PL_PNU120596_scheffel.jpg" rel="noopener noreferrer" target="_blank" style="color: rgb(5, 58, 92); background-color: initial;"><img src="https://www.nanion.dehttps://msimg.bioon.com/bionline//images/Images_tiff_jpg_png/Data/EPhys_Analysis/nACha7R_PL_PNU120596_scheffel.jpg" alt="nACha7R PL PNU120596 scheffel" width="265"></a></p><p><img src="https://www.nanion.dehttps://msimg.bioon.com/bionline//images/Images_tiff_jpg_png/Icons/Nanion_Icons/icon-pl.png" alt="icon pl">&nbsp;&nbsp; Patchliner data and applications:</p><p><br></p><p><em>Cells were kindly supplied&nbsp;by Galantos Pharma GmbH.</em></p><p><br></p><p>Representative current records of hα7-nAChR responses induced by nicotine and acetylcholine&nbsp;(ACh) (50, 100, 500 μM) in the absence (top) and presence of PNU-120596 (5, 10, 50 μM) (bottom). Horizontal bars indicate exposure time (233 ms) of compound(s). Data from&nbsp;<a href="https://www.nanion.de/en/products/patchliner/137-articles/2076-2018-electrophysiological-investigation-of-the-effect-of-structurally-different-bispyridinium-non-oxime-compounds-on-human-7-nicotinic-acetylcholine-receptor-activity-an-in-vitro-structure-activity-analysis.html" rel="noopener noreferrer" target="_blank" style="background-color: transparent; color: rgb(5, 58, 92);">Scheffel et al, 2018</a>.</p><p><br></p><p><br></p><h4><a href="https://www.nanion.de/zh/products/patchliner/197-home-zh/articles-zh/2294-acetylcholine-receptor-alpha-7-stable-nicotine-responses-zh.html" rel="noopener noreferrer" target="_blank" style="background-color: transparent; color: rgb(5, 58, 92);">Acetylcholine Receptor Alpha 7 - Stable nicotine responses</a></h4><p><br></p><p><br></p><p><img src="https://www.nanion.dehttps://msimg.bioon.com/bionline//images/Images_tiff_jpg_png/Icons/Nanion_Icons/icon-pl.png" alt="icon pl">&nbsp;&nbsp; Patchliner data and applications:<a href="https://www.nanion.dehttps://msimg.bioon.com/bionline//images/Images_tiff_jpg_png//Slider/nAChRa7_repetitive_PL.jpg" rel="noopener noreferrer" target="_blank" style="color: rgb(5, 58, 92); background-color: initial;"><img src="https://www.nanion.dehttps://msimg.bioon.com/bionline//images/Images_tiff_jpg_png/Slider/nAChRa7_repetitive_PL.jpg" alt="nAChRa7 repetitive PL" width="278"></a></p><p><br></p><p><br></p><p><em>Cells were kindly supplied&nbsp;by Galantos Pharma GmbH.</em></p><p><br></p><p>Stable whole-cell current amplitudes were obtained&nbsp;by repeated 100&nbsp;mM nicotine stimulation of HEK293 cells expressing&nbsp;human nACha7 receptors. The stacked application protocol was used.&nbsp;</p><p><br></p><p><br></p><h4><a href="https://www.nanion.de/zh/products/patchliner/197-home-zh/articles-zh/2246-glua2-receptor-fast-activation-zh.html" rel="noopener noreferrer" target="_blank" style="background-color: transparent; color: rgb(5, 58, 92);">AMPA Receptor (GluA2) - Fast Activation</a></h4><p><br></p><p><br></p><p><a href="https://www.nanion.dehttps://msimg.bioon.com/bionline//images/Images_tiff_jpg_png/Data/EPhys_Analysis/GluR2_CRC__current_time_course.jpg" rel="noopener noreferrer" target="_blank" style="color: rgb(5, 58, 92); background-color: initial;"><img src="https://www.nanion.dehttps://msimg.bioon.com/bionline//images/Images_tiff_jpg_png/Data/EPhys_Analysis/GluR2_CRC__current_time_course.jpg" alt="GluR2 CRC current time course" width="300"></a></p><p><br></p><p><img src="https://www.nanion.dehttps://msimg.bioon.com/bionline//images/Images_tiff_jpg_png/Icons/Nanion_Icons/icon-pl.png" alt="icon pl">&nbsp; &nbsp;Patchliner data and applications:</p><p><br></p><p><em>Cells were kindly provided by University of Sussex.</em></p><p><br></p><p>Shown is concentration dependent activation of GluA2&nbsp;receptors (known as AMPA receptors) by 10 μM, 30 μM, 100 μM, 300 μM and 1 mM Na-Glutamate from a GluA2&nbsp;expressing HEK293 cell. The rising phase is enlarged in the right graph.</p><p><br></p><p><br></p><h4><a href="https://www.nanion.de/zh/products/patchliner/197-home-zh/articles-zh/2177-ampa-receptor-glua2-inhibition-by-cnqx-zh.html" rel="noopener noreferrer" target="_blank" style="background-color: transparent; color: rgb(5, 58, 92);">AMPA Receptor (GluA2) - Inhibition by CNQX</a></h4><p><br></p><p><br></p><p><img src="https://www.nanion.dehttps://msimg.bioon.com/bionline//images/Images_tiff_jpg_png/Icons/Nanion_Icons/icon-pl.png" alt="icon pl">&nbsp;&nbsp;<a href="https://www.nanion.dehttps://msimg.bioon.com/bionline//images/Images_tiff_jpg_png/Data/EPhys_Analysis/GluA2_CNQX_SB_PL.jpg" rel="noopener noreferrer" target="_blank" style="color: rgb(5, 58, 92); background-color: initial;"><img src="https://www.nanion.dehttps://msimg.bioon.com/bionline//images/Images_tiff_jpg_png/Data/EPhys_Analysis/GluA2_CNQX_SB_PL.jpg" alt="GluA2_CNQX_SB_PL" width="300"></a></p><p>Patchliner data and applications:</p><p><br></p><p><em>Cells were kindly provided by SB Drug Discovery.</em></p><p><br></p><p>The AMPA receptor (GluA2) was blocked by CNQX on the Patchliner. CNQX was pre-incubated and then co-applied with glutamate. CNQX blocked the GluA2-mediated response in a concentration dependent manner and the potency was dependent on glutamate concentration (left). Exemplar GluA2-mediated responses are shown on the right activated by 100 μM glutamate and inhibited by increasing concentrations of CNQX.</p><p><br></p><p><br></p><h4><a href="https://www.nanion.de/zh/products/patchliner/197-home-zh/articles-zh/2313-astrocytes-analysing-potassium-currents-zh.html" rel="noopener noreferrer" target="_blank" style="background-color: transparent; color: rgb(5, 58, 92);">Astrocytes - Analysing Potassium Currents</a></h4><p><br></p><p><br></p><p><a href="https://www.nanion.dehttps://msimg.bioon.com/bionline//images/Images_tiff_jpg_png/Data/EPhys_Analysis/astrocytes.jpg" rel="noopener noreferrer" target="_blank" style="color: rgb(5, 58, 92); background-color: initial;"><img src="https://www.nanion.dehttps://msimg.bioon.com/bionline//images/Images_tiff_jpg_png/Data/EPhys_Analysis/astrocytes.jpg" alt="astrocytes" width="300"></a></p><p><img src="https://www.nanion.dehttps://msimg.bioon.com/bionline//images/Images_tiff_jpg_png/Icons/Nanion_Icons/icon-pl.png" alt="icon pl">&nbsp;&nbsp; Patchliner data and applications:</p><p><br></p><p><em>Data are taken from Milligan C.J. et al., Nature Protocols, 2009, 4(2), 244-255</em></p><p><br></p><p><em>Left:</em>&nbsp;Comparison of K+&nbsp;current voltage relationships for rat astrocytes on the Patchliner (closed circles, n&nbsp;=&nbsp;19) and on a conventional setup (open squares, n&nbsp;=&nbsp;10). Currents were measured as a response to a voltage step protocol.</p><p><br></p><p><em>Right:</em>&nbsp;Normalized K+&nbsp;current amplitudes in rat astrocytes. Internal solution was changed to the same solution (K+, open circles, n&nbsp;=&nbsp;7) or to one where Cs+&nbsp;was substitued for K+&nbsp;(Cs+,closed circles, n&nbsp;=&nbsp;7). Currents were measured as responses to voltage steps from −100&nbsp;mV to +40&nbsp;mV.</p><p><br></p><p><br></p><h4><a href="https://www.nanion.de/zh/products/patchliner/197-home-zh/articles-zh/2349-astrocytes-internal-perfusion-zh.html" rel="noopener noreferrer" target="_blank" style="background-color: transparent; color: rgb(5, 58, 92);">Astrocytes - Internal Perfusion</a></h4><p><br></p><p><br></p><p><a href="https://www.nanion.dehttps://msimg.bioon.com/bionline//images/Images_tiff_jpg_png/Data/EPhys_Analysis/p35_3_ratAstrocytes_2.jpg" rel="noopener noreferrer" target="_blank" style="color: rgb(5, 58, 92); background-color: initial;"><img src="https://www.nanion.dehttps://msimg.bioon.com/bionline//images/Images_tiff_jpg_png/Data/EPhys_Analysis/p35_3_ratAstrocytes_2.jpg" alt="p35 3 ratAstrocytes 2" width="300"></a></p><p><img src="https://www.nanion.dehttps://msimg.bioon.com/bionline//images/Images_tiff_jpg_png/Icons/Nanion_Icons/icon-pl.png" alt="icon pl">&nbsp;&nbsp; Patchliner data and applications:</p><p><br></p><p><em>Data courtesy of C. Peers, University of Leeds, Leeds, UK.</em></p><p><br></p><p>Whole cell currents from rat cortical astrocytes (primary culture) were evoked by 500 ms long depolarizing voltage steps (-100 mV to +40 mV). Currents were blocked by administration of internal Cs+, and recovered when switching back to Cs+-free internal solution. Averaged data are presented as mean ± S.E.M. (n=35). For more information, see Nature 254, 4 (2), 2009.</p><p><br></p><p><br></p><h4><a href="https://www.nanion.de/zh/products/patchliner/197-home-zh/articles-zh/2289-cardiac-action-potentials-automated-recordings-from-icells.html" rel="noopener noreferrer" target="_blank" style="background-color: transparent; color: rgb(5, 58, 92);">Cardiac Action Potentials - Automated recordings from iCells</a></h4><p><br></p><p><br></p><p><a href="https://www.nanion.dehttps://msimg.bioon.com/bionline//images/Images_tiff_jpg_png/Data/EPhys_Analysis/0AP_Patchliner_CDI.gif" rel="noopener noreferrer" target="_blank" style="color: rgb(5, 58, 92); background-color: initial;"><img src="https://www.nanion.dehttps://msimg.bioon.com/bionline//images/Images_tiff_jpg_png/Data/EPhys_Analysis/0AP_Patchliner_CDI.gif" alt="0AP Patchliner CDI" width="300"></a></p><p><br></p><p><img src="https://www.nanion.dehttps://msimg.bioon.com/bionline//images/Images_tiff_jpg_png/Icons/Nanion_Icons/icon-pl.png" alt="icon pl">&nbsp; &nbsp;Patchliner data and applications:</p><p><br></p><p>The stem cell-derived cardiomyocytes (iCell) were kindly supplied by Cellular Dynamics.</p><p><br></p><p>In this example both Na+&nbsp;and Ca2+&nbsp;mediate the action potential. When nifedipine is applied in the current clamp mode, the action potential is shortened significantly due to block of the calcium channels.</p><p><br></p><p><br></p><p>&nbsp;</p><p><br></p><p><br></p><h4><a href="https://www.nanion.de/zh/products/patchliner/197-home-zh/articles-zh/2323-cardiac-action-potentials-from-sc-derived-cardiomyocytes-zh.html" rel="noopener noreferrer" target="_blank" style="background-color: transparent; color: rgb(5, 58, 92);">Cardiac Action Potentials - From SC-Derived Cardiomyocytes</a></h4><p><br></p><p><br></p><p><a href="https://www.nanion.dehttps://msimg.bioon.com/bionline//images/Images_tiff_jpg_png/Data/EPhys_Analysis/AN_Patchliner_CorAtCardiomyocytes_-1.jpg" rel="noopener noreferrer" target="_blank" style="color: rgb(5, 58, 92); background-color: initial;"><img src="https://www.nanion.dehttps://msimg.bioon.com/bionline//images/Images_tiff_jpg_png/Data/EPhys_Analysis/AN_Patchliner_CorAtCardiomyocytes_-1.jpg" alt="AN Patchliner CorAtCardiomyocytes 1" width="300"></a></p><p><br></p><p><span style="background-color: transparent; color: rgb(5, 58, 92);">&nbsp;<img src="https://www.nanion.dehttps://msimg.bioon.com/bionline//images/Images_tiff_jpg_png/Icons/Nanion_Icons/icon-pl.png" alt="icon pl"></span>&nbsp; &nbsp;Patchliner data and applications:</p><p><br></p><p><em>Cells were kindly provided by Ncardia.</em></p><p><br></p><p>Action potentials recorded from stem-cell derived cardiomyocyetes (Cor.At®&nbsp;cardiomyocytes). Action potentials are triggered by small current pulses. Effects of quinidine and lidocaine on the action potentials are shown.</p><p><br></p><p>&nbsp;</p><p><br></p><p>&nbsp;&nbsp;</p><p><br></p><p><br></p><h4><a href="https://www.nanion.de/zh/products/patchliner/197-home-zh/articles-zh/2351-cardiac-ion-channels-pharmacology-of-sodium-channels-zh.html" rel="noopener noreferrer" target="_blank" style="background-color: transparent; color: rgb(5, 58, 92);">Cardiac Ion Channels - Pharmacology of Sodium Channels</a></h4><p><br></p><p><br></p><p><a href="https://www.nanion.dehttps://msimg.bioon.com/bionline//images/Images_tiff_jpg_png/Data/EPhys_Analysis/p35_1_CorAt.jpg" rel="noopener noreferrer" target="_blank" style="color: rgb(5, 58, 92); background-color: initial;"><img src="https://www.nanion.dehttps://msimg.bioon.com/bionline//images/Images_tiff_jpg_png/Data/EPhys_Analysis/p35_1_CorAt.jpg" alt="p35 1 CorAt" width="300"></a></p><p><img src="https://www.nanion.dehttps://msimg.bioon.com/bionline//images/Images_tiff_jpg_png/Icons/Nanion_Icons/icon-pl.png" alt="icon pl">&nbsp;&nbsp; Patchliner data and applications:</p><p><br></p><p><em>Cells (Cor.AT) were kindly provided by Axiogenesis.</em></p><p><br></p><p>The pharmacology of dibucaine was investigated by the application of 0.3, 1, 3, 10 μM in the presence of 10 μM nifedipine (L-type Ca2+-current blocker). Two control additions of nifedipine (10 μM) were made before the addition of increasing concentrations of dibucaine. The IC50&nbsp;value was determined as 355 ± 40 nM (n=3), which is in accordance with the literature.</p><p><br></p><p><br></p><h4><a href="https://www.nanion.de/zh/products/patchliner/197-home-zh/articles-zh/2196-cardiac-ion-channels-pharmacology-of-vandetanib-zh.html" rel="noopener noreferrer" target="_blank" style="background-color: transparent; color: rgb(5, 58, 92);">Cardiac Ion Channels - Pharmacology of Vandetanib</a></h4><p><br></p><p><br></p><p><a href="https://www.nanion.dehttps://msimg.bioon.com/bionline//images/Images_tiff_jpg_png/Data/EPhys_Analysis/CiPA_PE_CE_Pharmacology_Vandetanib.jpg" rel="noopener noreferrer" target="_blank" style="color: rgb(5, 58, 92); background-color: initial;"><img src="https://www.nanion.dehttps://msimg.bioon.com/bionline//images/Images_tiff_jpg_png/Data/EPhys_Analysis/CiPA_PE_CE_Pharmacology_Vandetanib.jpg" alt="CiPA PE CE Pharmacology Vandetanib" width="300"></a></p><p><img src="https://www.nanion.dehttps://msimg.bioon.com/bionline//images/Images_tiff_jpg_png/Icons/Nanion_Icons/Icon_CE.png" alt="Icon CE">&nbsp; &nbsp;&nbsp;CardioExcyte 96 and&nbsp; &nbsp;<img src="https://www.nanion.dehttps://msimg.bioon.com/bionline//images/Images_tiff_jpg_png/Icons/Nanion_Icons/icon-pl.png" alt="icon pl">&nbsp; &nbsp;Patchliner data and applications:</p><p><br></p><p><em>Cells were kindly provided by Charles River and Cellular Dynamics.</em></p><p><br></p><p><br></p><p>The image on the left hand side displays the results of the blocking effect of Vandetanib on hERG, NaV1.5, CaV1.2 and KV4.3.&nbsp;The compound induced arrhythmia when iPSC-CM were exposed to a minimum concentration of 1 μM. Arrhytmic events were both&nbsp;detected in field potential recordings as well as in the impedance based contractility.</p><p><br></p><p><br></p><h4><a href="https://www.nanion.de/zh/products/patchliner/197-home-zh/articles-zh/2352-cardiac-ion-channels-recordings-from-sc-derived-cardiomyocytes-zh.html" rel="noopener noreferrer" target="_blank" style="background-color: transparent; color: rgb(5, 58, 92);">Cardiac Ion Channels - Recordings from SC-Derived Cardiomyocytes</a></h4><p><br></p><p><br></p><p><a href="https://www.nanion.dehttps://msimg.bioon.com/bionline//images/Images_tiff_jpg_png/Data/EPhys_Analysis/p34_4_actPot.jpg" rel="noopener noreferrer" target="_blank" style="color: rgb(5, 58, 92); background-color: initial;"><img src="https://www.nanion.dehttps://msimg.bioon.com/bionline//images/Images_tiff_jpg_png/Data/EPhys_Analysis/p34_4_actPot.jpg" alt="p34 4 actPot" width="300"></a></p><p><br></p><p><img src="https://www.nanion.dehttps://msimg.bioon.com/bionline//images/Images_tiff_jpg_png/Icons/Nanion_Icons/icon-pl.png" alt="icon pl">&nbsp; &nbsp;Patchliner data and applications:</p><p><br></p><p><em>Cells were kindly provided by Ncardia.</em></p><p><br></p><p>The left picture shows a typical action potential from Cor.At®&nbsp;cardiomyocytes. Whole cell currents recorded in the voltage clamp mode reveal cardiomyocyte-typical ion channels (right). The traces represent mERG-, L-type Ca2+- (blue, block by 50 μM nifedipine), Na+- and K+-currents (from top left to bottom right).</p><p><br></p><p><br></p><h4><a href="https://www.nanion.de/zh/products/patchliner/197-home-zh/articles-zh/2281-cav22-cadmium-block-zh.html" rel="noopener noreferrer" target="_blank" style="background-color: transparent; color: rgb(5, 58, 92);">CaV2.2 - Cadmium Block</a></h4><p><br></p><p><br></p><p><a href="https://www.nanion.dehttps://msimg.bioon.com/bionline//images/Images_tiff_jpg_png/Data/EPhys_Analysis/Cd_DR_large.gif" rel="noopener noreferrer" target="_blank" style="color: rgb(5, 58, 92); background-color: initial;"><img src="https://www.nanion.dehttps://msimg.bioon.com/bionline//images/Images_tiff_jpg_png/Data/EPhys_Analysis/Cd_DR.gif" alt="Cd DR" width="300"></a></p><p><br></p><p><img src="https://www.nanion.dehttps://msimg.bioon.com/bionline//images/Images_tiff_jpg_png/Icons/Nanion_Icons/icon-pl.png" alt="icon pl">&nbsp; &nbsp;Patchliner data and applications:</p><p><br></p><p><em>Cells were kindly provided by Millipore.</em></p><p><br></p><p>The image&nbsp;shows&nbsp;current response of an individual cell in the presence of increasing cadmium concentrations. The IC50&nbsp;was calculated from&nbsp;the Hill fit to be 3.6 ± 0.4 μM (n = 5).</p><p><br></p><p>&nbsp;</p><p><br></p><p><br></p><h4><a href="https://www.nanion.de/zh/products/patchliner/197-home-zh/articles-zh/2282-cav2-2-current-voltage-relationship-zh.html" rel="noopener noreferrer" target="_blank" style="background-color: transparent; color: rgb(5, 58, 92);">CaV2.2 - Current Voltage Relationship</a></h4><p><br></p><p><br></p><p><a href="https://www.nanion.dehttps://msimg.bioon.com/bionline//images/Images_tiff_jpg_png/Data/EPhys_Analysis/Cav22_DR_large.gif" rel="noopener noreferrer" target="_blank" style="color: rgb(5, 58, 92); background-color: initial;"><img src="https://www.nanion.dehttps://msimg.bioon.com/bionline//images/Images_tiff_jpg_png/Data/EPhys_Analysis/Cav22_DR.gif" alt="Cav22 DR" width="300"></a></p><p><br></p><p><img src="https://www.nanion.dehttps://msimg.bioon.com/bionline//images/Images_tiff_jpg_png/Icons/Nanion_Icons/icon-pl.png" alt="icon pl">&nbsp; &nbsp;Patchliner data and applications:</p><p><br></p><p><em>Cells were kindly provided by Millipore</em></p><p><br></p><p>Representative current responses of an individual cell expressing CaV2.2 to a&nbsp;I/V voltage protocol.&nbsp;The average peak current at 30 mV of all recorded cells was -698 ± 115 pA (n = 6).</p><p><br></p><p>&nbsp;</p><p><br></p><p><br></p><h4><a href="https://www.nanion.de/zh/products/patchliner/197-home-zh/articles-zh/2280-cav32-current-to-voltage-relationship-zh.html" rel="noopener noreferrer" target="_blank" style="background-color: transparent; color: rgb(5, 58, 92);">CaV3.2 - Current-to-Voltage Relationship</a></h4><p><br></p><p><br></p><p><a href="https://www.nanion.dehttps://msimg.bioon.com/bionline//images/Images_tiff_jpg_png/Data/EPhys_Analysis/IV_Cav32_large.gif" rel="noopener noreferrer" target="_blank" style="color: rgb(5, 58, 92); background-color: initial;"><img src="https://www.nanion.dehttps://msimg.bioon.com/bionline//images/Images_tiff_jpg_png/Data/EPhys_Analysis/IV_Cav32.gif" alt="IV Cav32" width="300"></a></p><p><br></p><p><img src="https://www.nanion.dehttps://msimg.bioon.com/bionline//images/Images_tiff_jpg_png/Icons/Nanion_Icons/icon-pl.png" alt="icon pl">&nbsp; &nbsp;Patchliner data and applications:</p><p><br></p><p><em>Cells were kindly provided by Millipore</em></p><p><br></p><p>Representative current responses of an individual cell expressing Ca 2.2 to a standard voltage protocol.&nbsp;The average mean current at -20 mV of all recorded cells was -785 ± 110 pA (n = 12).</p><p><br></p><p><br></p><h4><a href="https://www.nanion.de/zh/products/patchliner/197-home-zh/articles-zh/2279-cav32-inactivation-zh.html" rel="noopener noreferrer" target="_blank" style="background-color: transparent; color: rgb(5, 58, 92);">CaV3.2 - Inactivation</a></h4><p><br></p>